\qquad

1) Find the determinant of the matrix below. (15 points)
$\left[\begin{array}{ccccc}2 & 0 & 5 & 0 & 4 \\ 1 & 2 & 3 & 0 & 0 \\ -2 & 0 & 0 & 4 & 0 \\ 1 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 5\end{array}\right]$
2) Given the basis and vector \vec{x}_{B} below, find \vec{x}_{S}. 10 points)

$$
B=\left\{\left[\begin{array}{l}
3 \\
6
\end{array}\right],\left[\begin{array}{l}
2 \\
4
\end{array}\right]\right\} \quad \vec{x}_{B}=\left[\begin{array}{c}
-1 \\
5
\end{array}\right]_{B}
$$

3) Given the two bases below, find the change of basis matrix that converts information from coordinate vectors in B_{2} to coordinate vectors in B_{1}, denoted by $[I]_{B_{1}}^{B_{2}}$. You do not need to perform the arithmetic. (10 points)

$$
B_{1}=\left\{\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
5 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} \quad B_{2}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\}
$$

4) Answer the questions below. (3 points each)
(A) Let A be a 3×3 matrix and $\vec{b} \in \mathbb{R}^{3}$. Assume the null space has dimension 1 . How many solutions can $A \vec{x}=\vec{b}$ have?
(B) Let A be a 7×4 matrix and assume $A \vec{x}=\overrightarrow{0}$ has only 1 solution. What is the rank of A ?
(C) Let A be a 5×8 matrix whose corresponding linear transformation is onto. How many free variables does the system of equations $A \vec{x}=\overrightarrow{0}$ have?
(D) Let A be a 5×5 matrix with $|A|=3$. How many solutions can $A \vec{x}=\overrightarrow{0}$ have?
(E) Let A be a 4×3 matrix with rank 2 . What is the dimension of the row space of A ?
5) Given the linear transformation below, determine whether or not it is one-to-one and justify your answer. (10 points. 3 for the answer; 7 for the reasoning)

$$
\begin{gathered}
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \\
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{gathered}
$$

6) Find the determinant of the matrix below. (5 points)
7) Given the system of equations below, use Cramer's Rule to write down a formula for the solution. You do not need to simplify or evaluate your answer(s). (10 points)

$$
\left[\begin{array}{ll}
7 & 5 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right]
$$

8) Find the product below. (10 points)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right]
$$

9) Find the inverse of the matrix below. (10 points)
10) Given the matrix below, find the quadratic form that corresponds to this matrix. (5 points)
